Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Vaccines (Basel) ; 11(6)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37376433

RESUMO

Tick-borne encephalitis (TBE) is an infectious disease of the central nervous system. The causative agent is the tick-borne encephalitis virus (TBEV), which is most commonly transmitted by tick bites, but which may also be transmitted through the consumption of raw dairy products or, in rare instances, via infected transfusions, transplants, or the slaughter of infected animals. The only effective preventive option is active immunization. Currently, two vaccines are available in Europe-Encepur® and FSME-IMMUN®. In Central, Eastern, and Northern Europe, isolated TBEV genotypes belong mainly to the European subtype (TBEV-EU). In this study, we investigated the ability of these two vaccines to induce neutralizing antibodies against a panel of diverse natural TBEV-EU isolates from TBE-endemic areas in southern Germany and in regions of neighboring countries. Sera of 33 donors vaccinated with either FSME-IMMUN®, Encepur®, or a mixture of both were tested against 16 TBEV-EU strains. Phylogenetic analysis of the TBEV-EU genomes revealed substantial genetic diversity and ancestry of the identified 13 genotypic clades. Although all sera were able to neutralize the TBEV-EU strains, there were significant differences among the various vaccination groups. The neutralization assays revealed that the vaccination using the two different vaccine brands significantly increased neutralization titers, decreased intra-serum variance, and reduced the inter-virus variation.

2.
Microorganisms ; 10(11)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36363717

RESUMO

Tick-borne encephalitis (TBE) is the most important viral tick-borne infection in Europe and Asia. It is emerging in new areas. The mechanisms of emergence are fairly unknown or speculative. In the Ravensburg district in southern Germany, TBE emerged, mainly over the last five years. Here, we analyzed the underlying epidemiology in humans. The resulting identified natural foci of the causal TBE virus (TBEV) were genetically characterized. We sampled 13 potential infection sites at these foci and detected TBEV in ticks (Ixodes ricinus) at eight sites. Phylogenetic analysis spurred the introduction of at least four distinct TBEV lineages of the European subtype into the Ravensburg district over the last few years. In two instances, a continuous spread of these virus strains over up to 10 km was observed.

3.
Virus Genes ; 58(3): 188-202, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35347588

RESUMO

Chikungunya virus (CHIKV), a (re)emerging arbovirus, is the causative agent of chikungunya fever. To date, no approved vaccine or specific antiviral therapy are available. CHIKV has repeatedly been responsible for serious economic and public health impacts in countries where CHIKV epidemics occurred. Antiviral tests in vitro are generally performed in Vero-B4 cells, a well characterised cell line derived from the kidney of an African green monkey. In this work we characterised a CHIKV patient isolate from Brazil (CHIKVBrazil) with regard to cell affinity, infectivity, propagation and cell damage and compared it with a high-passage lab strain (CHIKVRoss). Infecting various cell lines (Vero-B4, A549, Huh-7, DBTRG, U251, and U138) with both virus strains, we found distinct differences between the two viruses. CHIKVBrazil does not cause cytopathic effects (CPE) in the human hepatocarcinoma cell line Huh-7. Neither CHIKVBrazil nor CHIKVRoss caused CPE on A549 human lung epithelial cells. The human astrocyte derived glioblastoma cell lines U138 and U251 were found to be effective models for lytic infection with both virus strains and we discuss their predictive potential for neurogenic CHIKV disease. We also detected significant differences in antiviral efficacies regarding the two CHIKV strains. Generally, the antivirals ribavirin, hydroxychloroquine (HCQ) and T-1105 seem to work better against CHIKVBrazil in glioblastoma cells than in Vero-B4. Finally, full genome analyses of the CHIKV isolates were done in order to determine their lineage and possibly explain differences in tissue range and antiviral compound efficacies.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Glioblastoma , Antivirais/farmacologia , Antivirais/uso terapêutico , Brasil , Linhagem Celular , Vírus Chikungunya/genética , Chlorocebus aethiops , Glioblastoma/genética , Especificidade de Hospedeiro , Humanos , Replicação Viral
4.
Pathogens ; 11(2)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35215070

RESUMO

Tick-borne encephalitis (TBE) is a tick-transmitted, virus-induced neurological disease with potentially fatal outcomes in humans and animals. Virus transmission takes places in so-called tick-borne encephalitis virus (TBEV) microfoci, which constitute small areas of sustained virus circulation. In southern Germany, TBEV has been endemic for decades; however, a northward expansion of risk areas, based on disease incidence in the human population, has been observed in recent years. The present study investigated TBEV occurrence in questing ticks at eight locations in the federal state of Lower Saxony, northwestern Germany, chosen due to reported associations with human TBE cases (N = 4) or previous virus detection (N = 4). A total of 20,056 ticks were collected in 2020 and 2021 and tested for TBEV RNA in pools of ten nymphs or five adults by quantitative reverse transcription-PCR (RT-qPCR). Positive results were confirmed by RT amplification of the viral E gene. In total, 18 pools from five different sampling locations were positive for TBEV RNA. One previously unknown transmission focus was detected, while ongoing virus circulation was confirmed at the four further locations. Phylogenetic analysis showed that two different virus strains with different origins circulate in the locations identified as natural foci.

5.
Microorganisms ; 9(5)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919318

RESUMO

In May 2017, a hospitalized index case of tick-borne encephalitis (TBE) was confirmed by Serology. The case was linked to alimentary infection by raw milk from a goat farm in the region of Tübingen, Baden-Württemberg, Germany, where no previous TBE cases in the area had been reported before. The TBE focus was confirmed by isolation of the TBE virus from ticks and Serological confirmation of past infection in one of the five flock goats. Additional investigations by the local public health office identified 27 consumers of goat milk at the putative period of exposure. For 20/27 exposed persons, anamnestic information was gained by the local public health office. Twelve/fourteen exposed and non-vaccinated people developed clinical illness and were confirmed as TBE cases by Serology. Five/six vaccinated and exposed people did not develop the disease. The one exposed and vaccinated person had their last TBE vaccination booster more than 15 years ago, and therefore a booster was more than 10 years overdue. None of the regularly vaccinated and exposed persons developed clinical overt TBE infection. We report the first known TBE outbreak, during which, protection by TBE vaccination against alimentary TBE infection was demonstrated.

6.
Ticks Tick Borne Dis ; 12(4): 101693, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33690089

RESUMO

Tick-borne encephalitis virus (TBEV) is a vector-borne pathogen that can cause serious neurological symptoms in humans. Across large parts of Eurasia TBEV is found in three traditional subtypes: the European, the Siberian and the Far-eastern subtype. Small mammalian animals play an important role in the transmission cycle as they enable the spread of TBEV among the vector tick population. To assess the impact of TBEV infection on its natural hosts, outbred bank voles (Myodes glareolus) were inoculated with one out of four European TBEV strains. Three of these TBEV strains were recently isolated in Germany. The forth one was the TBEV reference strain Neudörfl. Sampling points at 7, 14, 28, and 56 days post inoculation allowed the characterization of the course of infection. At each time point, six animals per strain were euthanized and eleven organ samples (brain, spine, lung, heart, small and large intestine, liver, spleen, kidney, bladder, sexual organ) as well as whole blood and serum samples were collected. The majority of bank voles (92/96) remained clinically unaffected after the inoculation with TBEV, but still developed a systemic infection during the first week, which transitioned to a viraemia and an infestation of the brain in some animals for the remainder of the first month. Viral RNA was found in whole blood samples of several animals (50/96), but only in a small fraction of the corresponding serum samples (4/50). From the whole blood, virus was successfully reisolated in cell culture until 14 days after inoculation. Less than five percent of all inoculated bank voles (4/96) displayed signs of distress in combination with a rapid weight loss and had to be euthanized prematurely. Overall, the recently isolated TBEV strains showed marked differences, such as a more frequent development of long-term viraemia and a higher detection rate of viral RNA in various organs, in comparison to the reference strain Neudörfl. Overall, our data suggest that the bank vole is a potential amplifying host in the TBEV transmission cycle and appears to be highly adapted to circulating TBEV strains.


Assuntos
Arvicolinae , Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Encefalite Transmitida por Carrapatos/veterinária , Doenças dos Roedores/virologia , Animais , Encefalite Transmitida por Carrapatos/virologia , Feminino , Alemanha , Masculino
7.
Virus Genes ; 57(2): 133-150, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33590406

RESUMO

Chikungunya virus (CHIKV) is a (re)emerging arbovirus and the causative agent of chikungunya fever. In recent years, CHIKV was responsible for a series of outbreaks, some of which had serious economic and public health impacts in the affected regions. So far, no CHIKV-specific antiviral therapy or vaccine has been approved. This review gives a brief summary on CHIKV epidemiology, spread, infection and diagnosis. It furthermore deals with the strategies against emerging diseases, drug development and the possibilities of testing antivirals against CHIKV in vitro and in vivo. With our review, we hope to provide the latest information on CHIKV, disease manifestation, as well as on the current state of CHIKV vaccine development and post-exposure therapy.


Assuntos
Antivirais/uso terapêutico , Febre de Chikungunya/prevenção & controle , Profilaxia Pré-Exposição , Animais , Febre de Chikungunya/diagnóstico , Febre de Chikungunya/epidemiologia , Vírus Chikungunya/fisiologia , Desenvolvimento de Medicamentos , Humanos , Vacinas Virais
8.
Microorganisms ; 9(1)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33477924

RESUMO

Tick-borne encephalitis virus (TBEV), like other arthropod-transmitted viruses, depends on specific vectors to complete its enzootic cycle. It has been long known that Ixodes ricinus ticks constitute the main vector for TBEV in Europe. In contrast to the wide distribution of the TBEV vector, the occurrence of TBEV transmission is focal and often restricted to a small parcel of land, whereas surrounding areas with seemingly similar habitat parameters are free of TBEV. Thus, the question arises which factors shape this focal distribution of TBEV in the natural habitat. To shed light on factors driving TBEV-focus formation, we used tick populations from two TBEV-foci in Lower Saxony and two TBEV-foci from Bavaria with their respective virus isolates as a showcase to analyze the impact of specific virus isolate-tick population relationships. Using artificial blood feeding and field-collected nymphal ticks as experimental means, our investigation showed that the probability of getting infected with the synonymous TBEV isolate as compared to the nonsynonymous TBEV isolate was elevated but significantly higher only in one of the four TBEV foci. More obviously, median viral RNA copy numbers were significantly higher in the synonymous virus-tick population pairings. These findings may present a hint for a coevolutionary adaptation of virus and tick populations.

9.
Viruses ; 12(11)2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33147840

RESUMO

We are currently facing a pandemic of COVID-19, caused by a spillover from an animal-originating coronavirus to humans occurring in the Wuhan region of China in December 2019. From China, the virus has spread to 188 countries and regions worldwide, reaching the Sahel region on March 2, 2020. Since whole genome sequencing (WGS) data is very crucial to understand the spreading dynamics of the ongoing pandemic, but only limited sequencing data is available from the Sahel region to date, we have focused our efforts on generating the first Malian sequencing data available. Screening 217 Malian patient samples for the presence of SARS-CoV-2 resulted in 38 positive isolates, from which 21 whole genome sequences were generated. Our analysis shows that both the early A (19B) and the later observed B (20A/C) clade are present in Mali, indicating multiple and independent introductions of SARS-CoV-2 to the Sahel region.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/epidemiologia , Genoma Viral/genética , Pneumonia Viral/epidemiologia , RNA Viral/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Betacoronavirus/isolamento & purificação , COVID-19 , Criança , Pré-Escolar , Feminino , Variação Genética/genética , Genômica , Humanos , Masculino , Mali/epidemiologia , Pessoa de Meia-Idade , Pandemias , Filogenia , SARS-CoV-2 , Sequenciamento Completo do Genoma , Adulto Jovem
10.
Virus Genes ; 56(6): 767-771, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33034798

RESUMO

In the present work, two complete genome sequences of SARS-CoV-2 were obtained from nasal swab samples of Tunisian SARS-CoV-2 PCR-positive patients using nanopore sequencing. The virus genomes of two of the patients examined, a Tunisian soldier returning from a mission in Morocco and a member of another Tunisian family, showed significant differences in analyses of the total genome and single nucleotide polymorphisms (SNPs). Phylogenetic relationships with known SARS-CoV-2 genomes in the African region, some European and Middle Eastern countries and initial epidemiological conclusions indicate that the introduction of SARS-CoV-2 into Tunisia from two independent sources was travel-related.


Assuntos
COVID-19/epidemiologia , Genoma Viral , Pandemias , Filogenia , SARS-CoV-2/genética , Adulto , Doenças Assintomáticas , COVID-19/diagnóstico , COVID-19/transmissão , COVID-19/virologia , Europa (Continente)/epidemiologia , Feminino , Hospitais Militares , Humanos , Masculino , Pessoa de Meia-Idade , Militares , Marrocos/epidemiologia , Linhagem , RNA Viral/genética , SARS-CoV-2/classificação , SARS-CoV-2/isolamento & purificação , Doença Relacionada a Viagens , Tunísia/epidemiologia , Carga Viral , Sequenciamento Completo do Genoma
11.
Viruses ; 11(11)2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31731773

RESUMO

Tick-borne encephalitis is the most important tick-transmitted zoonotic virus infection in Eurasia, causing severe neurological symptoms in humans. The causative agent, the tick-borne encephalitis virus (TBEV), circulates between ticks and a variety of mammalian hosts. To study the interaction between TBEV and one of its suspected reservoir hosts, bank voles of the Western evolutionary lineage were inoculated subcutaneously with either one of eight TBEV strains or the related attenuated Langat virus, and were euthanized after 28 days. In addition, a subset of four strains was characterized in bank voles of the Carpathian linage. Six bank voles were inoculated per strain, and were housed together in groups of three with one uninfected in-contact animal each. Generally, most bank voles did not show any clinical signs over the course of infection. However, one infected bank vole died and three had to be euthanized prematurely, all of which had been inoculated with the identical TBEV strain (Battaune 17-H9, isolated in 2017 in Germany from a bank vole). All inoculated animals seroconverted, while none of the in-contact animals did. Viral RNA was detected via real-time RT-PCR in the whole blood samples of 31 out of 74 inoculated and surviving bank voles. The corresponding serum sample remained PCR-negative in nearly all cases (29/31). In addition, brain and/or spine samples tested positive in 11 cases, mostly correlating with a positive whole blood sample. Our findings suggest a good adaption of TBEV to bank voles, combining in most cases a low virulence phenotype with detectable virus replication and hinting at a reservoir host function of bank voles for TBEV.


Assuntos
Arvicolinae/virologia , Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Encefalite Transmitida por Carrapatos/veterinária , Doenças dos Roedores/virologia , Animais , Anticorpos Antivirais/imunologia , Linhagem Celular , Células Cultivadas , Reservatórios de Doenças/virologia , Vírus da Encefalite Transmitidos por Carrapatos/isolamento & purificação , Humanos , Imunoensaio , RNA Viral , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Doenças dos Roedores/diagnóstico , Avaliação de Sintomas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA